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We consider a spin system with nearest-neighbor antiferromagnetic pair interac- 
tions in a two-dimensional lattice. We prove that the free energy of this system 
is differentiable with respect to the uniform external field h, for all temperatures 
and all h. This implies the absence of a first-order phase transition in this 
system. 
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1. I N T R O D U C T I O N  

We consider an antiferromagnetic system on a two-dimensional lattice Z 2 
whose Hamiltonian is given by 

(i,j> iEZ 2 

Here a i =  1 or - 1  for all i E Z  2 and (L j>  indicates that the sum is over 
nearest-neighbor pairs of lattice sites i and j. 

Let #+ and /~- represent the (extremal) Gibbs states corresponding 
to the two possible "chessboard" boundary configurations of l's and 
- l ' s .  Dobrushin (4) showed that if Ihl <4,  / ~ + r  at sufficiently low 
temperatures. He also proved that if Ihl >4, there exists only one Gibbs 
state for all temperatures. Thus, the antiferromagnet experiences a phase 
transition in the sense that the number of Gibbs states is discontinuous in 
the phase plane. 
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It has been conjectured that this system experiences a second-order 
phase transition (see, for example, refs. 5 and 8) and that the free energy 
P is therefore a differentiable function of h for all values of h and all 
temperatures. 

In this paper, we prove the following: 

T h e o r e m  1.1. Let P be the free energy of the spin system with 
Hamiltonian H. Then dP/dh exists everywhere. 

The absence of a first-order phase transition for the two-dimensional 
antiferromagnet may be contrasted with related models. It is well known 
that the Ising ferromagnet and the antiferromagnet with external uniform 
magnetic field h replaced by the (unphysical) staggered field experience 
first-order phase transitions. Unlike the ferromagnetic case, the antierro- 
magnet has coexisting Gibbs states while the free energy is continuously 
differentiable. 

The proof of Theorem 1.1 may be summarized as follows. A 
standard argument (given in Section 6 for the convenience of the reader) 
shows that the free energy is differentiable at h if and only if 
M=#[-0"(o,o)-[-ff(l,0)-[-O'(o, 1) --}- o'(1,1)] is the same for any Gibbs state #, 
invariant under reflections and two-step translations about coordinate axes. 
Let Go be the set of such invariant Gibbs states. The problem then reduces 
to proving that M is the same for all /~ ~ Go, for fixed temperature and 
external field. Since # + and /~ -  give the same value for M, P will be dif- 
ferentiable provided /~+ and # -  are the only extreme points in G 0. This 
follows if the probability of coexistence of two infinite chessboard clusters 
of opposite type is zero for any Gibbs state in Go. By conditioning an 
arbitrary Gibbs state in Go on an appropriate invariant set D of configura- 
tions, we prove the impossibility of this coexistence in Section 5. 
Preliminary technical results are given in Section 3 and 4, while definitions 
and some basic properties of Gibbs states are given in Section 2. 

For  the two-dimensional ferromagnetic case, Aizenman (~) showed that 
the set of all Gibbs states has at most two extremal Gibbs states. Our 
situation here is different from that in refs. 1 and 9 for the lack of sign 
symmetries due to the presence of h. The problem of determining the 
structure of the set of all Gibbs states for the antiferromagnetic system 
remains open. 

2. N O T A T I O N S ,  DEF IN IT IONS,  A N D  BASIC PROPERTIES 

Let s be the set of all configurations ~ =  (~i, i~Z2), with ~ri= 1 or 
- 1. For  any finite subset A of Z 2 and ~, the finite-volume Gibbs state in 
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A with boundary condition 6, corresponding to the Hamiltonian H, is the 
probability measure defined by 

fiA(a)=(1/Z~A)exp(-- fl ~ aiaj+hfi ~ ai) 
( i , j ) E A  i ~ A  

for a~£2 A. Here (2A= {--1, 1} A, ( i , j )~A means at least i o r j  must be 
in A, ]i-j] = 1, and a i =  G if i is not in A. The positive number fl is the 
inverse of the temperature, and Z A is the normalization constant. 

It is well known that 

P =  - l i m  l n 2 ~  as ATZ 2 
IAI 

where the limit is independent of & P is called the free energy of the system. 
It is convenient to consider the transformation s~= ( - l ) m  ai, where 

lil = i1 + i2 for i =  (ij, i2). Under this transformation, fiA(a) is equal to 

#~A(S)=(1/Z~A)expl fl ~ &sj+hfl ~ (-1)l~ls~] 
( i , j ) e A  l e a  

The free energy becomes 

P= -lim lnZA ~ as ATZ 2 (2.1) 
rAI 

for all g. 
The set f2 is compact in the product topology of discrete topologies at 

each lattice site. For any continuous function f defined on f2, let 

#~(f)= ~ #eA(S ) f(s /x f) 
SE(2 A 

where (s/x ~)i=si  for i e f2  and equals gi for i~f2 c. Then gA defines a 
measure on the Borel sets of f2. 

Let ~A be the a-algebra generated by {si, i eA}. A probability 
measure p on the Borel sets of ~2 is called a Gibbs state if 

#(fI~A)(£)=yA(f), #-a.s. g (2.2) 

for any bounded measurable function f on f2. 
For  s,s'~f2, we say that s<~s' ifsi<<,s'i for all i ~ Z  2. A function f on 

f2 is said to be increasing if f(s)<~f(s') whenever s<~s'. Let p, v be 
measures on the Borel sets of f2. We say that/~ ~< v i f /~(f)  ~< v(f), for all 
increasing functions f .  
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It is well known (see, e.g., ref. 7) that the following F K G  inequalities 
hold. Let v be a Gibbs state or finite-volume Gibbs state, f ,  g increasing 
functions on f2. Then 

v(fg ) >~ v ( f  ) v( g ) (2.3) 

#~ ~/ l~  for s ~< s' (2.4) 

Denote by #~ and #A the finite-volume Gibbs state in A with 
boundary conditions s i=  1 and s i=  - 1 ,  respectively. It follows from the 
F K G  inequalities t h a t / ~  decreases to a Gibbs state # +, and #~ increases 
to a Gibbs states / l - ,  as A increases to Z 2. Now we make a list of basic 
properties about Gibbs states (see, e.g., ref. 7 for the proofs). 

(a) The set of all Gibbs states G is a compact convex set./1 +, # -  are 
extremal points of G. 

(b) Any Gibbs state is Markovian. 

(c) # +, # -  are two-step translational invariant, reflectional invariant 
about each axis and rotational invariant by right angles. 

(d) Let ~ = 0A MAr, where A runs over all finite subset of Z 2. Then 
/z ( - [B~)eG,  for a l l / z e G  and Boo e ~  for which v(B~)~O.  

(e) Let ext(G) be the set of extremal points of G. If p e ext(G), then 
#(Boo)=0 or 1 for all B~ e~oo. 

(f) L e t A e Z 2 b e a f i n i t e s e t .  I f A e ~ A a n d A # ~ , t h e n # ( A ) > O f o r  
all / l  e G. 

(g) If # t e x t ( G ) ,  then p ( A ) = 0  or 1 for any event A which is 
invariant under any nontrivial subgroup of the translation group. 

(h) Let 0 be a one-step translation along either the 1-axis or 2-axis. 
Let I: 12 ~ (2 be the transformation I(s)= - s .  Then 0p + = Ip - .  

(i) There exists only one Gibbs state if and only if /l+(S(0o))= 
/z- (S(0o)) or equivalently # § (S(oo/+ s(m)) = 0. 

3. E R G O D I C  D E C O M P O S I T I O N S  

Let Ti be the two-step translation along the i axis. Let R i be the reflec- 
tion about the i axis. For  i =  1, 2, we denote by H i the group generated by 
Ti, R1, R2. The group generated by T1, T2, R1, and R2 is denoted by H o. 
Let ~,. be the set of Hcinvariant events and Gi the set of Hrinvariant  
Gibbs states. Let # be a probability measure on f2, and A an event. For  the 
rest of this paper, we write ps and A s for the transformations of # and A, 
respectively, by a transformation S on Z2. 
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Lemma 3.1. For  i =  1, 2, if v ~ ext(G~), then there exists # ~ G such 
that/2 is T~-ergodic and 

(3.1) 

ProoL Let Ji be the set of Ti-invariant Gibbs states. By the 
Choquet-Meyer  theorem, (3) there exists a probability measure ~ on ext(J~) 
such that 

u = fo xt(Ji) 

Since v is H;-invariant, it follows that 

v=�88 + co ' + + co'% 
ext(Ji) 

Note that the integrand is Gi-valued. Since v ~ ext(Gi), the integrand must 
be a constant for 7-a.e. o3. This constant is equal to the right side of (3.1) 
for some # E ext(Ji). This proves the lemma since any element of ext(Ji) is 
TFergodic. 

Let i k ~ Z  2, k = l ,  2,.... We call (il,...,i,,) a chain if ik and ik+l are 
nearest neighbor for all k. Let i , j ~ Z  2, W c Z  2. We say that i a n d j  are 
connected in W if there exists a chain il,..., i, in W such that il = i and 
i n = j. We say that W is connected if any two elements of W are connected 
in W. A chain is called a circuit if all the points are different except that 
two endpoints are equal. 

Given a configuration s and a subset W of Z 2, a connected component 
of { i s W; si = 1 } is called a ( + )-cluster in W and a connected component 
of {i~ W; s~= - 1 }  is called a ( - ) -c lus te r  in W. A chain in {i; s~= 1} is 
called a ( + )-chain of s. Similar definitions apply to ( + )-circuit, ( - )-chain, 
etc. Let z e Z  2, V, W c Z  2. We denote by [ z , V ; W ]  the event that z is 
connected to some element of V by a (+)-chain  in W. We also denote by 
I-z, oe, W] the event that z is contained in an infinite ( + )-cluster in W. 

It follows essentially from the proof of the corollary after the "Multiple 
Ergodic Lemma" in ref. 6 that the following lemma holds. 

Lemma 3.2. Let Wbe  a subset o f Z  2 and U, Vfinite subsets o f Z  z. 
If the F K G  inequalities hold for # and # is Ti-ergodic, then there exists a 
sequence of natural numbers N such that 

]2Ez , o(3; W \ ( T Z N U u  TffV)] >/#Ez, o(3; W]/2 (3 .2)  
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L e m m a  3.3. Let Wbe a subset o f Z  2 and U, Vfinite subsets of Z 2. 
If v e ext(Gi), then there exists a sequence of natural numbers N such that 

v(A u A R~ u A R2 u A R~R2) >~ v(B c~ B RI c~ B R2 c~ B R ~ ) / 2  

where A = [z, oe; W\(T~NUt..) TNV)] a n d B =  [z, o9; W]. 

Proo f  o f  L e m m a  3,3, Let p ~ G such that p is Ti-ergodic. Then by 
Lemma 3.2, there exists N such that 

#(A w A R1 w A R2 ~ A RIR2) 

>>,#(A)>>,p(B)/2>>,p(BnBRlc~BR2c~BR1R2)/2 (3.3) 

Now Lemma 3.3 follows from (3.3), Lemma 3.1, and the reflectional 
invariance of events on the left and right sides of (3.3) about each axis. 

Let A, B be defined as in Lemma 3.3. 

C o r o l l a r y  3.4. Let v E ext(Gi). If A, B are R1, R2-invariant for all 
N, then there exists a sequence of natural numbers N such that 

v(A ) >>, v(B)/2 (3.4) 

Proof.  This is a direct consequence of Lemma 3.3. 

C o r o l l a r y  3.5. Let v Eext(G,.). Then there exists a sequence of 
natural numbers N such that 

v(A)/> Iv(B)]4/8 (3.5) 

Proof. By Lemma 3.3 and the F K G  inequalities, there exists a 
sequence N such that 

v(A u A R~ w AR2 w A RIR2) >~ v(B) v(B Rt ) v(B R2) v(BR~R2)/2 

Now the corollary follows from the R1, Rz-invariance of v. 

4. P E R C O L A T I O N  IN S T R I P S  

Let QN = {(il, i2); ]i2[ ~<N} and K N =  {(i~, i2); [i1[ ~<N}. 

L e m m a  4.1. Let # e G 0 .  Then 

#[z, o e ; Q u ] = 0  fora l l  ZEQN f o r a l l N  (4.1) 

#[Z, oO;KN]=O for all zEK u for all N (4.2) 



Absence of Phase Transitions 1397 

ProoL I~EGo implies #eG1.  By the Choquet-Meyer theorem, (3) 
there exists a probability measure ~ on ext(G~) such that 

tx= f v dot(v) (4.3) 
ext(G1) 

By the Hl-ergodicity of veext(G~) and property (f) of Section 2, 
V[Z, o0; QN] = 0  for all ZEQN , for all N. 

By (4.3), /J[z, oo; QN] = 0  for all Z r  , for all N. The proof for the 
other direction is similar. 

5. S T R U C T U R E  OF Go 

T h e o r e m  5.1. Let # e  Go. Then 

# = 2 # +  + ( 1 - 2 ) / ~  , 0~<2~<1 

To prove Theorem 5.1, we use the following lemmas, which are 
obtained essentially by following the proof of the theorem in ref. 6. Let 
H + = { i ;  i2~>0} and H ={i ;  i2~<0}. Let B = { i = ( i l ,  i2); [il[<~n, 
]i21 ~<n}, and let B be the event that the box B is surrounded by the 
(+)-circuit. From the "first part of the proof" in ref. 6, we have the 
following result. 

Lemma 5.2. Suppose the F K G  inequalities hold for #, /~ is H2- 
invariant, and # satisfies (4.1) and (3.5) with i = 2. If #[0, oo;H + ] = p  > 0, 
then/~(B) ~>p16/21s for all B. 

Let ~_ be the event that (O, j )eZ  2 is contained in an infinite (+) -  
cluster in {i2 ~< j}. The event Fj+ is defined similarly with i2 ~< j replaced by 
i2 ~> j. From the "second part of the proof" in ref. 6, we have the following 
result. 

L e m m a  5.3. Suppose the F K G  inequalities hold for /t, /x is 
Hl-invariant, and /x satisfies (3.5) with i=1 .  If # [ 0 , ~ ; Z 2 ] = p > 0 ,  
#(Fj+) = #(Fj=)= 0 for all j, then/t(B) >/p16/242  for any box B. 

Remark. The conclusion of Lemmas 5.2 and 5.3 needed for our 
purpose is that /t(B) is uniformly bounded below by a positive number. 
Under the assumptions of Lemma 5.2, this can be proved rather easily 
using the results of Burton and Keane (2) as well as the methods of ref. 6. 

,Proof of Theorem 5,1, Let # ~ Go. Let 

D= U c<+i} 
j even 
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where C~j is the event that there exists an infinite (+)-cluster in {i2>~j} 
and C~j is the event that there exists an infinite (+)-cluster in {i2 <~j}. 

Case I. Suppose/~(D) = 1. Since/~ e G2, we have 

fo vd~(v) (5.1) 
= x t ( G 2 )  

for some probability measure/~ on ext(G2). 
By (4.1), for each z and N, v[z, ~;  QN] = 0  for fl-a.s.v. This implies, 

for fl-a.e, v, v[z, co; QN] = 0  for all Z~QN for all N. 
Therefore for/%a.e, v, v satisfies (4.1). By Corollary 3.5 (applied to G2), 

v satisfies (3.5) with i = 2  for all v~ext(G2). 
By assumption /~(D)= 1, we get v(D)= 1 for /%a.e.v. By the FKG 

inequalities and T2-invariance of v, for fl-a.e, v, v[-0, ~ ;  H + ] >0.  By 
Lemma 5.2, there exists 6 > 0  such that v(B)>/6 for all B. This implies 
v(0BB)~>6. Since v~ext(G2) and 0 ~ B  is G2-invariant, we get 
v ( 0 ~ B ) =  1. This implies v(C+c~ C - ) = 0  for fl-a.e, v, where C + is the 
event that there exists an infinite (+)-cluster in Z 2 and C -  is the event 
that there exists an infinite (-)-cluster  in Z 2. By (5.1), #(C + n C - ) = 0 .  

Case 2. Assume /z(D) = 0. To prove #(C + ~ C ) = 0, it is sufficient 
to consider the case/~(C + ) > 0. By considering the conditioning on C +, we 
may assume # ( C + ) =  1. By the Choquet-Meyer theorem, there exists a 
probability measure a on ext(G1) such that 

= fo v d~(v) (5.2) ~t xt(G1) 

Then for ~-a.e. v, v (C+)=  1 and v(D)=0.  By the F K G  inequalities and 
Rl-invariance of v, we have v[0, ~ ;  Z 2] >0,  v(Fj+)=v(Fj )=0 ,  for all j, 
for ~-a.e.v. By Corollary 3.5, v satisfies (3.5). By Lemma 5.3, there exists 
a 6 such that v(NBB)~>6. Since v~ext(G1) and (N~B) is G~-invariant, 
we have v(0B B ) =  1, e-a.e. This 
(5.2), we have #(C + n C - ) = 0 .  

Case 3. Assume 0 < #(D) < 

implies v(C+n C ) = 0  for e-a.e.v. By 

1. Consider 

/~(. ) = #(-ID) ft(D) + #(. I D ~ #(D ~ 

Note that D is Ho-invariant. Therefore both conditional probability 
measures are in Go. They satisfy the assumptions in case 1 or case 2 and 
therefore #(C + ~ C - )  = 0. 

The conclusions in cases 1-3 imply that 

~(.)=~(.l(C+)C)~((c+)~)+~(.IC+ ~ ( c  )~ n ( c - )  ~) 
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By essentially the same proof as that of Lemma 1 in ref. 9, the first condi- 
tional probability measure equals # -  and the second one equals # +. This 
proves Theorem 5.1. 

6. P R O O F  OF T H E O R E M  1.1 

1 Let g=~[S(o,o)-S(1,o)-S(o,~)+s(l,1)]. It follows from a general 
method using tangent functionals (see, e.g., ref. 6) that dP/dh exists if and 
only if there exists a constant M such that 

M = # ( g )  

for all # ~ Go. This fact can be proved easily. We include a proof here for 
the convenience of the reader. 

By H61der inequalities and (2.1), - P  is the limit of convex functions 
LAI-11nZ~ in h. Therefore P'(h) exists for almost every h, - P '  is 
increasing in h, and when it exists, it can be evaluated by taking derivative 
inside the limit sign. Then 

-P'(h)=lim ~#A(y'i~A(-1)lilsi) as ATZ 2 (6.1) 
IA[ 

if P'(h) exists. 
Integrating both sides of (6.1) with respect to d#(g), using (2.2) and 

the dominated convergence theorem, we get for all # E Go, 

-P'(h)=p(g) (6.2) 

if P'(h) exists. 
Let h 0 be fixed. Choose h, such that P'(h,)  exists for each n and 

h, + ho. Then (6.2) holds for each n. Let #~ be the Gibbs state in the right- 
hand side of (6.2) for each n. By Helley's theorem, there exists a convergent 
subsequence (#,t) of (#n). Let # be the limit of the subsequence. Then 
# e Go. Therefore we have 

lim - P'(hn) = #(g) (6.3) 
hn ~ ho 

for some # ~ Go. The same argument applies to the left derivative and it 
shows that the left derivative of P at h 0 is equal to the right-hand side of 
(6.3) with # replaced by some Gibbs state v ~ Go. This proves the claim. 

Now by Theorem 5.1, for any # ~ Go, 

#(g) = 2#+(g) + ( 1 - 2 )  # (g) 

By property (h) of Section 2, the above is equal to #+(g). End of proof of 
Theorem 1.1. 
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